7 research outputs found

    Planetary wave activity in the stratosphere

    Get PDF

    Improvements in forecasting intense rainfall: results from the FRANC (forecasting rainfall exploiting new data assimilation techniques and novel observations of convection) project

    Get PDF
    The FRANC project (Forecasting Rainfall exploiting new data Assimilation techniques and Novel observations of Convection) has researched improvements in numerical weather prediction of convective rainfall via the reduction of initial condition uncertainty. This article provides an overview of the project’s achievements. We highlight new radar techniques: correcting for attenuation of the radar return; correction for beams that are over 90% blocked by trees or towers close to the radar; and direct assimilation of radar reflectivity and refractivity. We discuss the treatment of uncertainty in data assimilation: new methods for estimation of observation uncertainties with novel applications to Doppler radar winds, Atmospheric Motion Vectors, and satellite radiances; a new algorithm for implementation of spatially-correlated observation error statistics in operational data assimilation; and innovative treatment of moist processes in the background error covariance model. We present results indicating a link between the spatial predictability of convection and convective regimes, with potential to allow improved forecast interpretation. The research was carried out as a partnership between University researchers and the Met Office (UK). We discuss the benefits of this approach and the impact of our research, which has helped to improve operational forecasts for convective rainfall event

    Real‐time flood forecasting based on a high‐performance 2D hydrodynamic model and numerical weather predictions

    No full text
    A flood forecasting system commonly consists of at least two essential components, i.e., a numerical weather prediction (NWP) model to provide rainfall forecasts and a hydrological/hydraulic model to predict the hydrological response. Whilst being widely used for flood forecasting, hydrological models only provide a simplified representation of the physical processes of flooding due to negligence of strict momentum conservation. They cannot reliably predict the highly transient flooding process from intense rainfall, in which case a fully 2D hydrodynamic model is required. Due to high computational demand, hydrodynamic models have not been exploited to support real‐time flood forecasting across a large catchment at sufficiently high resolution. To fill the current research and practical gaps, this work develops a new forecasting system by coupling a graphics processing unit (GPU) accelerated hydrodynamic model with NWP products to provide high‐resolution, catchment‐scale forecasting of rainfall‐runoff and flooding processes induced by intense rainfall. The performance of this new forecasting system is tested and confirmed by applying it to ‘forecast’ an extreme flood event across a 2,500 km2 catchment at 10 m resolution. Quantitative comparisons are made between the numerical predictions and field measurements in terms of water level and flood extent. To produce simulation results comparing well with the observations, the new flood forecasting system provides 34 hours of lead time when the weather forecasts are available 36 hours beforehand. Numerical experiments further confirm that uncertainties from the rainfall inputs are not amplified by the hydrodynamic model towards the final flood forecasting outputs in this case

    Real‐Time Flood Forecasting Based on a High‐Performance 2‐D Hydrodynamic Model and Numerical Weather Predictions

    No full text
    A flood forecasting system commonly consists of at least two essential components, i.e., a numerical weather prediction (NWP) model to provide rainfall forecasts and a hydrological/hydraulic model to predict the hydrological response. Whilst being widely used for flood forecasting, hydrological models only provide a simplified representation of the physical processes of flooding due to negligence of strict momentum conservation. They cannot reliably predict the highly transient flooding process from intense rainfall, in which case a fully 2D hydrodynamic model is required. Due to high computational demand, hydrodynamic models have not been exploited to support real‐time flood forecasting across a large catchment at sufficiently high resolution. To fill the current research and practical gaps, this work develops a new forecasting system by coupling a graphics processing unit (GPU) accelerated hydrodynamic model with NWP products to provide high‐resolution, catchment‐scale forecasting of rainfall‐runoff and flooding processes induced by intense rainfall. The performance of this new forecasting system is tested and confirmed by applying it to ‘forecast’ an extreme flood event across a 2,500 km2 catchment at 10 m resolution. Quantitative comparisons are made between the numerical predictions and field measurements in terms of water level and flood extent. To produce simulation results comparing well with the observations, the new flood forecasting system provides 34 hours of lead time when the weather forecasts are available 36 hours beforehand. Numerical experiments further confirm that uncertainties from the rainfall inputs are not amplified by the hydrodynamic model towards the final flood forecasting outputs in this case
    corecore